Separator Based Sparsification. I. Planary Testing and Minimum Spanning Trees
نویسندگان
چکیده
We describe algorithms and data structures for maintaining a dynamic planar graph subject to edge insertions and edge deletions that preserve planarity but that can change the embedding. We give a fully dynamic planarity testing algorithm that maintains a graph subject to edge insertions and deletions and that allows queries that test whether the graph is currently planar, or whether a potential new edge would violate planarity, in O(n ) amortized time per update or query. We give fully dynamic algorithms for maintaining the connected components, the best swap and the minimum spanning forest of a planar graph in O(log n) worst-case time per insertion and O(log n) per deletion. Finally, we give fully dynamic algorithms for maintaining the 2-edge-connected components of a planar graph in O(log n) amortized time per insertion and O(log n) per deletion. All of the data structures, except for the one that answers planarity queries, handle only insertions that keep the graph planar. All our algorithms improve previous bounds. The improvements are based upon a new type of sparsification combined with several properties of separators in planar graphs. ] 1996 Academic Press, Inc.
منابع مشابه
Using Sparsification for Parametric Minimum Spanning Tree Problems
Two applications of sparsification to parametric computing are given. The first is a fast algorithm for enumerating all distinct minimum spanning trees in a graph whose edge weights vary linearly with a parameter. The second is an asymptotically optimal algorithm for the minimum ratio spanning tree problem, as well as other search problems, on dense graphs.
متن کاملSpanning Tree Enumeration in 2-trees: Sequential and Parallel Perspective
For a connected graph, a vertex separator is a set of vertices whose removal creates at least two components. A vertex separator S is minimal if it contains no other separator as a strict subset and a minimum vertex separator is a minimal vertex separator of least cardinality. A clique is a set of mutually adjacent vertices. A 2-tree is a connected graph in which every maximal clique is of size...
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملProbabilistic Spectral Sparsification In Sublinear Time
MIT Abstract. In this paper, we introduce a variant of spectral sparsification, called proba-bilistic (ε, δ)-spectral sparsification. Roughly speaking, it preserves the cut value of any cut (S, S c) with an 1 ± ε multiplicative error and a δ |S| additive error. We show how to produce a probabilistic (ε, δ)-spectral sparsifier with O(n log n/ε 2) edges in time˜O(n/ε 2 δ) time for unweighted undi...
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Syst. Sci.
دوره 52 شماره
صفحات -
تاریخ انتشار 1996